
In conclusion, we should note that, as in [9], in this work the effect of kinetic 
processes (the nonequilibrium nature of the vibrational and rotational degrees of freedom, 
condensation) and the effect of rarefaction, in the broad sense of these concepts, were not 
examined. Moreover, the starting parameters were chosen in such a way that the kinetic pro- 
cesses indicated had no significant effect on the nature of the interaction. 
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BURGERS APPROXIMATION FOR PLANE LONG-WAVELENGTH DISTURBANCES 

IN AEROSUSPENSIONS 

S. V. Tarakanov and O. M. Todes UDC 532.593;541.182.2/3 

In reports devoted to the investigation of transient normal compression shocks in aero- 
disperse media (see [i, 2], for example), essentially only the initial stage of evolution of 
these shocks, the section of formation of the relaxation wave, is considered. The study of 
subsequent stages in the evolution of shock waves in aerosuspensions is of no less interest 
from the point of view of assuring industrial safety in connection with performing explosive 
work (mining, explosive welding, etc.). In the present report the final stage of evolution 
of waves in suspensions of solid and liquid particles, the stage of degeneration of a shock 
wave into a sound wave, is investigated by methods of nonlinear acoustics. The dissipative 
properties of aerosuspensions are analyzed and the structure of the shock front in this 
stage of evolution is examined. 

We will assume that solid or liquid particles with a constant weight concentration are 
suspended in an inert gas in the initial stage undisturbed by the wave. Before the arrival 
of the wave the aerosuspension is assumed to be monodisperse, at rest in the coordinate sys- 
tem (x, t), and in equilibrium. In the case of liquid particles the gaseous phase contains, 
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in addition to the inert gas, vapors of the liquid with a partial pressure equal to the 
saturation pressure at the temperature of the drops. The flow of the aerodisperse medium 
will be described using a model of interpenetrating continuous media. 

First we show that the equations of dynamics of the two-continuum model developed in 
[3-6] and elsewhere are reduced to a Burgers equation for the velocity of the gaseous phase for 
weak long-wavelength disturbances. We note that the equations obtained in [7, 8] are not 
valid in the case of disturbances of long duration, since they do not change into the equa- 
tions of the equilibrium model. 

i. The Long-Wavelength Approximation and the Burgers Approximation 

for an Aerosuspension of Solid Particles 

Without imposing limits on the intensity of the wave, we consider only those simplifi- 
cations which follow from the assumption that the characteristic times of relaxation of the 
particles are small compared with the duration of the wave process. 

The system of equations describing an aerosuspension of solid particles can be repre- 
sented in the form (see [9], for example) 

dtp + pOxu = 0, p = pT;  ( 1 . 1 )  
a ~ 
o v --___~u, (1.2) pdtu + -~-O~p = r ~ , 

9dtT -~- (? -- t)pOxu = r%(O - -  T)/TT "~- (i,3) 

q V(",' - -  t ) ( v  - -  u)2/~; 
d~tr + foxy = 0; ( 1 . 4 )  

d2tv = (~ -- V)/Tu, d2tO = (T -- @)/'or, (1.5) 

where d t = 3t + U3x; d2t -- ~t + V3x; P, r, u, v, T, and 0 are the densities, velocities, 
and temperatures of the gaseous and disperse phases; p is the pressure; y is the adiabatic 
index of the gaseous phase; ao is the frozen-in speed of sound; TU and T T are the dynamic 
and thermal relaxation times; X is the ratio of specific heats of the particles and gas at 
constant volume. 

Equations (1.1)-(1.5) are written in dimensionless form. As the scales of pressure, 
density, and temperature we take the values of the respective parameters in the undisturbed 
gas. As the units of measurement of velocity, time, and length we take the equilibrium 
speed of sound ae = [g/(l + •176 (• is the initial weight concentration of the disperse 
phase and g = (? n ~ • ~- • the characteristic time To of the wave process, and the 
length aeTo, respectively. 

Equations (1.5) can be integrated along the trajectories of motion y(t) of particles 
of the disperse phase, where drY = v. Assuming that v -- 0 and 0 = 1 at t = to, we will 
have 

4~--t 
v== TY~l yexp(---~u ) u [ g ( t ~ ) , ~ ] d O ,  

t o 

t 

o-_ ( <ol..o, o 
tll 

In the long-wavelength approximation Tu, TT << i, so that the integrands near the upper 
limit make the main contribution to the integrals. Expanding u(0) and T(0) in series near 
0 = t on this basis and taking T u and T T as quantities of the same order, we obtain 

v = u - -  "~, d,u + "c~ (diuOxu -? d~tu) -~ 0 (T~), ( 1 . 6 )  

Substituting Eqs. (1.6) into (1.2)-(1.4) and discarding terms containing the square of the 
relaxation times, we have 
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^ [ 1 r - 0  .r 
( P  rz )  dY t  ] (7 - -  "~-) p~: , '  : ; 7yr, ~(:~w,~ T -~-d;~, ) -:- 7'~--' l )  r ~ ( d ~ u ) - ' ,  

(1.7) 

Thus, in the long-wavelength approximation the initial system (1.1)-(1.5) was reduced 
to the system (i.i), (1.7). Since terms containing the square of the characteristic re- 
laxation times were omitted in Eqs. (1.7), for rough estimates of the applicability of 

2 
this approximation we can use the condition Tu, T~ << I. Further simplification can be ob- 
tained for wave processes of still greater duration (Tu, T T ~ i). 

In fact, taking the relaxation time to zero in (1.7), with allowance for (I.I) we ob- 
tain a closed system describing the equilibrium flow of the aerosuspension (see [9], for 
example). It is obvious that for waves of infinite duration (an infinite step) the equi- 
librium description is exact, since T u = ~T = 0 in this case. Such a description allows one 
to determine the propagation velocity of the shock wave and the equilibrium parameters of 
the medium behind the relaxation zone, although it provides no information about the struc- 
ture of the shock front, its width, etc. In a first approximation this information can be 
obtained on the basis of the model (i.i), (1.7). For further refinement of the picture of 
the relaxation processes one must allow for higher-order terms in the expansions (1.6) or 
else one must integrate the initial system (1.1)-(1.5). 

Now let us proceed to the consideration of weak waves. We introduce disturbances of 
= p' T' = the parameters of the aerosuspension in the form p' p -- i, = p -- i, = T -- i, u' 

u, r' ==(r-- • and we will assume that these disturbances are quantities of first-order 
smallness ~O(e). We also assume that the relaxation times x u and T T are ~ 0(~), while the 
concentration • of the disperse phase is ~0(i). Under these assumptions we reduce the sys- 
tem (i.i), (1.7) to one equation using Khokhlov's method [I0], according to which the 
parameters of the wave in the comoving coordinate system (~ = t -- x, t) will be slowly vary- 
ing functions of time t because of the weak nonlinearity. On this basis, following [i0], 
we henceforth assume that in the variables (~, t) time differentiation increases the order 
of smallness by one. 

Changing to the coordinates (~, t) in (i.i) and (1.7), eliminating p', p ' ,  r', and T' 
successively from the analysis, and discarding terms of ~O(r we obtain the Burgers equa- 
tion for the velocity of the gaseous phase, 

Otu--t'ltO~u ~]O~u, (1.8) 
where k = 0.5(g + i), n = qu + hT, and 

x,, • "cT •  ( 1 . 9 )  
q" : 2 1 + •  ~ [ ~  2 g(l-E-• 

Thus, for a weak disturbance (u << I) of long duration(~, ~<< l)an aerosuspension of 
solid particles represents a viscous medium. The development of viscosity, as follows from 
(1.9), is due to processes of friction (nu) and heat exchange (nT) between phases. 

2. The Burgers Approximation for an Aerosuspension of Liquid 

Particles 

To describe wave processes in drop suspensions we use the system of equations [9] 

dt91 + p~a~u --: O, dtp., + 9,,0~u := ], 
2 - - I  9dtu -i- ao'? O~p ::: .f -+- (v - -  u) j, 

(P~7., -~- f'~Z.,)dt T -}- (~ - -  1)pOx u -= q ~- 2(V -- i ) (v  - -  u)./ 

+ ly._,z~O - -  7,.,Y - -  0.57(V - -  1)(v - -  uylj, 
P Pl i -  P,,, Pi ' :  mipiT,  trti ~: [I /tJi ,  p :-: P l  + P2, d~tr + f O x  v = - - ] ,  d . , t S -  . . . .  

rd., W . . . . . .  f ,  r zd ,  t(=) . . . . .  q - -  y t l j ,  

r P 2 e  - -  P '2  r 

J .~"2) ~ '  ! s-~(~"-") '  q : : = ,  ( O -  ;~'), 

[ v,r )] P ~  P~o exp  .(~, _ t) m,., ( 1 - - ( 9 - 1  , 

2 S . 
:3 r 1' 

(2.1) 
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where ~ is the molecular weight; S is the surface area of a particle; H = he/cpoTo is the 
dimensionless heat of vaporization; YD is the diffusional relaxation time; the indices 1 and 
2 mark parameters of the inert gas and the vapor; the variables p, u, p, T, U, and y without 
indices correspond to the gaseous phase. 

The quantities appearing in Eqs. (2.1) are made dimensionless exactly as in Sec. i. 
We only note that the equilibrium speed of sound a e is not known in advance, so that the 
quantity a~y -~ remains undetermined as yet. 

We introduce small departures O(e) of the parameters of the medium from the equilibrium 
p a r a m e t e r s  t h r o u g h  t h e  e q u a t i o n s  p ~ : - p ~ - - •  p ~ = : p ~ - - m i •  (i =: 1, 2), T'  = T - - 1 ,  r '  :-: ( r - - x ) / •  
S '  : = - 1 - -  S,  (9'  := O - -  1, u '  ::: u, and v' = v. The 
trations of the inert gas and the 
~.m2 == z~%1 @ • :=: '1. We assume that 
For simplicity we will henceforth use 
P'e on the temperature G', P;e, where 

Substituting the expressions for 
comoving coordinates (~, t), with the 
later the primes to the variables are 

0tp l  7~ ( t  -- u)O~p~ - -  (• @ p~)O~u = O, Otp.: (2.2) 

+ (1 - -  u) 0~p~.--(• + 02) O~u = • + r + 8 - -  p) (zO - -  p ~ ) / ~ ,  

2 -~ = •  V - - .  u. O~u + ( l + p~ -I- p~ - -  u) O~u - -  ao? O~p ~ , 

0 , r  + ( I + p , x ~  + P~Z~ - -  u)O~T - -  (V - -  1)(t  + p)O~u = • (1 + r + S)  

X (O - -  T) /~ r  q- • - -  t)(1 -,~- r + S + T - - p ) ( z O  - -  p~)/~.~, p = (map~ 

+:  m , p , ) ( l  q-  r ) + r ,  p . , = m = p ~ ( t + f )  + m , •  0 , r  + (1 - -  v)O~r - -  (1 + r) 

• O ~ v = - - ( t  + r + S - - p ) ( z O - - p ~ ) / ~ ,  0 ~ 8 + ( 1 - - v ) 0 ~ S = ( 2 / 3 )  (1 

- - p )  (zO --P~)/~v,  O,v + (I - -  v)O~v = (t  4- S)(u - -  v)t~,,  

o t o + ( l - v )  o ~ e = ( i + s )  U~ - - - T ( ~ - p )  ~o j" 

letters ~ and x2 denote the concen- 
vapor in the equilibrium state, so that • • • ~ 
the concentration • of the disperse phase is _< 0(i). 
a linear dependence of the saturated vapor pressure 

z =: •  -1. 

the perturbations into (2.1) and changing to the 
accuracy of O(ea), inclusively, we obtain (here and 
omitted) 

Integrating the last two equations of the system (2.2), we find the connection between the 
velocity and temperature of the particles and the remaining parameters of the aerosuspension 
with the required accuracy, 

2 e 
v = u - -  TuOtu - - ~ u ( l  - -  u, - -  S )  O~u -~-%tO~u ~ 0 (e4), ( 2 . 3 )  

= _ - -  , ~,O~q~ + 7 P *  § 0 (e4). 0 T "r,Otq) - -  % ( t  u - -  S -~- czp) O~q9 -k- 2 2 

where 

~p = (1 - - ~ ) ( T  + g p 2 ) ;  ~1~ = (I  - - a ) ( z T - - p 2 ) ,  ~ ,  .... ( l - - ~ ) ~ r .  

a = z H ( t  -i- zH)  - l .  

Eliminating the vapor pressure and the temperature T from (2.2), as well as the particle 
velocity and temperature in accordance with (2.3), we obtain a system of six differential 
and two algebraic equations describing the evolution of the perturbations in an aerosuspen- 
sion under consideration. Let us reduce the system thus obtained to one equation. 

Since we intend to bring out primarily the qualitative relationships of the influence 
of mass exchange on the parameters of waves propagating in an aerosuspension below, we 
assume that • This corresponds physically to the case in which the temperature of 
the medium is considerably lower than the boiling temperature of the liquid. In addition, 
to simplify the expressions obtained below we will discard a number of unimportant terms. 
The relative contribution of these terms was estimated from the parameters of water drops 
in air at atmospheric pressure and a temperature of 20~ (in this case • Thus, in 
the expression for g (see (2.4)) we neglect the work of pressure forces, X2(Y2 -- i), con- 
nected with the change in the volume of the substance in the phase transition, in compari- 
son with the heat yH of the phase transition, etc. We note that the accuracy of the equa- 
tions thus obtained increases with a decrease in the initial temperature of the medium, so 
that in the case of water drops in air at atmospheric pressure the description given below 
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is valid with variation of the temperature from 0 to~20~ i.e., it covers the most im- 
portant temperature range for practical work. Evidently, it should be expected that the 
qualitative character of the results is retained in a somewhat wider temperature range. 

We determine the connection of the parameters of an aerosuspension with the velocity 
of the gaseous phase in the acoustical approximation and find the value of the coefficient 
a~7-*. With allowance for the adopted assumptions, we have 

,,,(l + x) ,~ g == ~, -T- xy~ -~- : - - - -TH' i .  ( 2 . 4 )  

c .... t. 4-  •  -t" ~ 2 " ~  ' H ,  ~P ..... ~" --c t. u - =  ,,'~ - -  '1) u.  

z 1) u ,  Ot ~>=lt*,p= .... ~ ( g - -  

)] 2 • [yH \ 
r = t = 2 - \ ~ - - t  u ,  

q 

_'a_2 [ z :  ,'-:H . . . .  l ' i  ++, a ( l  - -  ~)  z , ,  

Using Eqs. (2.4) we represent the equation of motion of the gaseous phase of the sys- 
tem (2.2) in the form 

x ,~0{~.u. ( 2 . 5 )  O~u -i- O~z, - -  O~p = l-i-x 

From this it follows that to reduce the initial system (2.2) to one equation it remains to 
find an expression for +~p through derivatives of the velocity u with the accuracy of terms 
O(e 2) , inclusively. 

Eliminating 3~p from (2.5) using the remaining equations of the system (2.2), we obtain 
Eq. (1.8), the coefficients k and ~ of which are defined as 

1~ :~: 0 . 5 (g  -'- 1), 11 = ~1~ '-- q r  + rio, ( 2 . 6 )  

"% z "rT g -  I :':Z 
ri'~ 2 1 4 - z '  riT = ~  ,~ c!I@• . 

"rr, l za ZI[(yII'-:"7 t o - i - l )  •  " e l i , , ,  1} 
: 7 ;c -7 7i; -W' '  

As follows from (2.6), the effective viscosity of an aerosuspension of liquid particles 
is due to friction (~u, heat exchange (nT), and mass exchange (nD) between phases. We note 
that in the limit • the expressions (2.6) change into Eqs. (1.9) for an aerosuspension 
of solid particles. 

In the derivation of Eq. (1.8) from the system (2.1) the disturbances of all the param- 
eters of the medium were assumed to be small. However, the change in particle size will be 
small only at high enough values of the concentration of the disperse phase, i.e., when 
• ~ • .... The value of zm can be estimated from the relation 2• (71[inftc -I- I) ~ 3z (see 
(2.4)), from which we obtain • ~ 01 for an aerosuspension of water drops in air under the 
conditions indicated above. 

3. Dissipative Properties of Aerosuspensions 

As shown above, for weak long-wavelength disturbances the �9 between the 
gaseous and disperse phases can be allowed for using coefficients of viscosity, the ex- 
pressions for which through the parameters of the aerosuspension are determined by Eqs. 
(1.9) and (2.6). From these equations it follows that the effective viscosity is propor- 
tional to the characteristic times of the relaxation processes. Therefore, in the equi- 
librium approximation (Yu, ~T, T D § 0) the evolution of disturbances is described by the equa- 
tion 

Ot~ -- l;ua~t~ = 0. (3.1) 

It is known (see [ii], for example) that the solution of Eq. (1.8) as ~ § 0 comes down 
to the discontinuous solution of Eq. (3.1) satisfying the condition U = --ku/2 = --(g + l)u/4 
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at the discontinuity, where U is the velocity of movement of the discontinuity. Conse- 
quently, the model under consideration is a generalization of an equilibrium approximation. 
From the physical point of view the limiting transition Tu, TT, T D +0 corresponds either to 
a decrease in the diameter of particles of the disperse phase (Tu, TT, TD % D') or to an 
increase in the duration of the wave process. 

Let us consider the influence of the concentration • of the dispersed substance on the 
coefficients of viscosity of the aerosuspension. In Fig. I we present the dependence of 
b = 2~Tu I on • for suspensions of solid (solid lines X = i, dot--dash lines X = 4.2) and 
liquid (dashed lines X = 4.2, H = 6.6, m2 = 1.6) particles in air (y = 1.4). It is assumed 
that ru = YX-ITT = TD" Lines 0-3 correspond to the total (b = b u + b T + bD), "dynamic," 
"thermal," and "diffusional" viscosities. It is seen that in an aerosuspension of solid 
particles with X = i the "dynamic" viscosity considerably exceeds the "thermal" viscosity 
in practically the entire range of concentrations, i.e., in the given case friction between 
the phases plays the decisive role in processes of interaction of the phases. With an in- 
crease in the heat capacity X the role of heat exchange increases considerably, as seen from 
Fig. I, especially in the region of low concentrations. We note that since the adiabatic 
index approaches unity with an increase in ~ the "thermal" viscosity varies nonmonotoni- 
tally. Its maximum value of b T = X(I -- y-x)(l + yO.5)-2 is reached at • = y05%-~ Despite 
this, the total viscosity grows monotonically with an increase in concentration. 

The dissipative properties of an aerosuspension change considerably when mass exchange 
between the phases is present. In this case, along with the "dynamic" and "thermal" vis- 
cosities, the ratio between which remains approximately the same as for solid particles 
(see Fig. i), "diffusional" viscosity connected with phase transitions is also present in 
the medium. With a decrease in concentration the quantity b D increases, and formally b D § ~ 
as x-+0 . As was noted, however, the region of small u (~0A) for an aerosuspension of 
liquid particles cannot be analyzed within the framework of the present model. Such be- 
havior of the coefficient b D leads to nonmonotonic variation of the total viscosity of an 
aerosuspension of liquid particles (see Fig. i). 

The following physical explanation can be given for the increase in "diffusional" vis- 
cosity with a decrease in the concentration of the disperse phase. The process of equaliza- 
tion of the temperatures of the gaseous and disperse phases can be divided into two stages. 
In the first stage the particle temperature rises in a time on the order of T T to the 
value at which all the heat supplied to the particle is expended on the phase transition. 
After this, since the particle temperature hardly varies now, equalization of the tempera- 
tures of the two phases is accomplished through variation of the gas temperature. From the 
equation of energy of the gaseous phase (see (2.2)) it is seen that the characteristic time 
of this process is ~T(Z~--I. " 

The good agreement between the total viscosities of aerosuspensions of liquid and 
solid particles at the same values of the heat capacity of the disperse phase (X = 4.2) and 
~>0,6 (see Fig. i) should be noted. This means that at relatively high concentrations of 
the dispersed substance the role of mass exchange is insignificant compared with the force 
and thermal interactions of the phases. 

4. Structure and Evolution of Waves in an Aerosuspension 

Solutions of the model problems under consideration here for the Burgers equation are 
well known (see [ii], for example), so that we turn attention only to their specifics in 

application to an aerosuspension. 

To investigate the structure of a wave we consider the problem of the decay of an in- 
finite step. Let a disturbance u(~, 0)~ V~C~) be assigned at the initial time. Then the 
solution (1.8) at t >> 1 is written in the form 

u = V [ i  + e x p  ( - - y R e ) ]  -~1, 

where Re = 0.bkVn-* is the Reynolds number; y = ~ + 0.bkVt is the spatial variable connected 

with the wavefront. 

We find the thickness I of the wavefront by defining it as I = V(~yU) -~ ly=o. We will 

have 

~, = 4 R e - 1  = i 6 ~ l V - l ( g  -p1) -1, 
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Thus, because of the linear dependence of X on viscosity we can speak of different 
thicknesses Xu, XT, and I D of the wavefront connected with processes of friction, heat ex- 
change, and mass exchange between phases, and since the quantity g depends weakly on the 
parameters of the aerosuspension, the character of the variation of these thicknesses is 
fully determined by the behavior of the coefficients of viscosity corresponding to them. 

As was noted~ more precise information about the structure of the wave can be obtained 
if the next discarded terms are allowed for in the expansions (1.6) and (2.3). This would 
lead to the appearance not only of dissipation but also of dispersion in the medium. A 
whole series of investigations have been devoted to the analysis of the dispersion proper- 
ties of media with relaxation (see [12], for example). The results obtained show that 
allowance for dispersion terms usually does not lead to significant corrections. 

Turning to an analysis of the evolution of a wave of finite duration, we note that the 
initial shape of the disturbances plays a pronounced role only in the early stage of their 
evolution, i.e., as estimates show, in the time interval of (0, max(~ -~, ~aq-~Re-~)), 
where ~o is the size of the disturbed region at t = 0. Therefore, to establish the 
asymptotic characteristics (at t ~ l) of the damping the initial condition is unimportant. 
Assigning this condition in the form of a 6 impulse (u(~, 0) = A6(~)), we will have 

2A (e Re --l)e -~ 
u - - ( ~ l t e k t ) O , S e R e  + I @ 2(e Ile - -  t ) * ( ~ ) '  ( 4 . 1 )  

where  r  i s  t h e  p r o b a b i l i t y  i n t e g r a l ;  Re = k A (2 n ) -~ ;  ~ = ~ ( 2 n t )  - 0 " 5 .  

The solution of this problem in the equilibrium approximation (n = 0) has the form 

~f = - - ( 2 A k t )  ~ uf = (2A/kt)o.5,  u = - -  ~lkt,  ~ ~ (~f., 0) ( 4 . 2 )  

and represents the classical Crussard solution. 
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An analysis shows (see [ii]) that at small values of the viscosity the solution (4.1) 
corresponds basically to the equilibrium solution (4.2) except for sections with lengths 
of ~Re -I and Re -0'5 located near strong and weak discontinuities. For an aerosuspension of 
solid particles this means that at low concentrations of the dispersed substance the relaxa- 
tion processes resulting in the "slippage" of the gaseous and disperse phases with respect 
to velocity and temperature play a role only in these sections. With an increase in con- 
centration the "slippage" effects become important over the entire extent of the wave dis- 
turbance. In Fig. 2 we present the evolution of a wave (A = 0.05) in an aerosuspension of 
solid particles (• %=i, T~=0A) with and without allowance for relaxation processes 
(solid lines for solution (4.1) and dashed lines for (4.2)). Lines 1-4 correspond to times 
t = 2, 5, i0, and 20. As seen from Fig. 2, "slippage" of the phases leads to smearing out 
of the wave and a decrease in its amplitude compared with an equilibrium wave when relaxa- 
tion processes are ignored. The role of relaxation processes grows still more with a 
further increase in the concentration of the disperse phase. In Fig. 3 we give profiles of 
waves with • = 005 and 0.5 (lines 1 and 2, respectively) at the time t = i0; the values 
of the remaining parameters are the same as in Fig. 2. It is seen that with x = 0.5 the 
wave does not resemble an equilibrium wave even remotely. This occurs because at high 
enough values of ~ the viscous term in Eq. (1.8) becomes dominant over the nonlinear term. 
Then the solution of the problem of the evolution of a 6 impulse is described by the ex- 
pression 

u = A(4~t) -~ exp (--0.5~2), (4.3) 

which represents the source function for the one-dimensional equation of heat conduction. 
Just such a case occurs in practice in Fig. 3 (solid curve 2). 

Equally high values of the coefficient of "effective" viscosity are characteristic of 
an aerosuspension of liquid particles, as follows from Fig. i. Therefore, the evolution of 
a wave disturbance in an aerosuspension of liquid particles with T u = 0.i is also described 

by Eq. (4.3). 

The above analysis showed that relaxation processes of exchange of mass, momentum, and 
heat between phases lead to smearing out of the wave profile (see Figs. 2 and 3). And 
within the framework of the given approximation the influence of each of the indicated pro- 
cesses is additive (n = ~u + ~T + nD and I = lu + %T + %D)" The effect of smearing out of 
the wave is the greater, the higher the values of the coefficients of "viscosity," the con- 
nection of which with the parameters of the medium is given by Eqs. (1.9) and (2.6). We 
note that nonuniformity of the aerosuspension must be taken into account even at very low 
values of ~; for the cases presented in Figs. 2 and 3, ~ ~ 3"10 -3 and 2"10 -2 �9 

The role of processes of interaction between phases is not uniform. For a suspension 
of solid particles with X = i, for example, momentum exchange plays the dominant role in the 
entire accessible range of concentrations, while allowance for heat exchange leads to 
approximately a 10% correction to the determination of ~ (see Fig. i). In the case of 
liquid particles (water drops) at low concentrations (•215 the effects of friction 
and heat and mass exchange are comparable with each other (see Fig. i), while at higher con- 
centrations mass exchange becomes unimportant compared with the force and thermal interac- 
tions of the phases. 

The authors wish to thank A. A. Borisov, talks with whom stimulated the performance of 

the present investigation [13]. 
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VORTICAL SINGULARITY OF SELF-SIMILAR GAS FLOW IN THE REFLECTION 

OF A SHOCK WAVE 

E. F. Zhigalko, L. L. Kolyshkina, 
and V. D. Shevtsov 

UDC 533.6.011 

We consider the problem of the transient gas flow developing when a plane shock wave, 
propagating through a stationary homogeneous gas 0 and characterized by a Math number M = 
u/ao, strikes a rigid impermeable wall forming a wedge with an angle 8 at the time t = 0. 
We consider the case in which the angle 8 is large enough that the wave configuration 
represented in Fig. 1 developed in the interaction, where CD is the incident wave, BC is 
the regularly reflected wave, BE is the front of the rarefaction wave propagating from AO 
through the region of uniform flow 2, AB is the diffracted wave, and 3 is the region of non- 
uniform flow. In the absence of a characteristic size the problem is self-similar with 
arguments x = X/t and y = Y/t. 

In the case of 0 § ~/2 [I, 2], u=w = 0 at point O, i.e., the flow is stagnant. An 
asymptotic analysis as ~ § O indicates that in the vicinity of point 0 flow takes place around 
the corner with conservation of most of the X component of the velocity. One can assume 
that in the intermediate case of e < 7/2 flow around the corner takes place near point 0 and 
gas particles which have entered 3 through point A on the diffracted shock wave are located 
at the wall OE (at some part of it) adjacent to point O. On the other hand, obviously, 
particles which have entered 3 from 2 under the action of the rarefaction wave BE are 
located on the part of the wall OE adjacent to point E. The point separating the gas which 
has reached OE in different ways is designated as F in Fig. 1. 

If one assumes that the gas is nonviscous and thermally nonconducting, then one can 
state that the entropy per particle is conserved during motion inside 3, and therefore 
particles on different sides of point F have different entropies and, because of the con- 
tinuity of pressure, different densities. Point F, a vortical flow singularity [3, 4] of 
the type under consideration, corresponds to a Furry singularity of conical gas flows [5]. 

The vortical singularity (VS) at point F is an essential element of the fundamental 
problem of reflection of a shock wave from a wedge under consideration. In each of the 
approaches (analytical, numerical, or experimental) the motifs connected with its existence 
must be taken into account. Very satisfactory results obtained using a variant of a numeri- 
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